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Abstract

This paper presents the radial vibration characteristics of piezoelectric cylindrical transducers. Taking into account the

piezoelectric anisotropy, dynamic differential equations of piezoelectric radial motion have been derived in terms of radial

displacement and electric potential. Applying mechanical and electric boundary conditions has yielded a characteristic

equation for radial vibration of the radially polarized piezoelectric cylinder. Theoretical calculations of the fundamental

natural frequency have been compared with numerical and experimental results for transducers of several sizes, and have

shown a good agreement.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Many electromechanical sensors or actuators [1] used nowadays in various fields are based on piezoelectric
phenomenon [2], which converts electric signals into mechanical vibrations and vice versa. Most piezoelectric
transducers of a disc type use longitudinal vibrations in the thickness direction and a few uses torsional
vibrations with shear motion in the circumferential direction as a torsional transducer [3].

On the other hand, piezoelectric cylindrical transducers have been introduced in several forms. A transducer
polarized in the axial direction undergoes axial motion under the electric drive in the radial thickness direction,
and is used as an aligner or a translator, for example in a scanning tunneling microscope [1]. A transducer
polarized in the circumferential direction undergoes radial vibrations resulting from circumferential expansion
and compression [4]. A transducer polarized in the radial direction undergoes radial vibrations, and is used for
flow control [5] or for flow measurement [6].

This paper deals with the radial vibration of piezoelectric cylindrical transducers polarized in the radial
direction. The behaviors of these transducers have been studied in some different point of view. The static
behavior was derived for cylindrical ceramic tubes [7,8]. Dynamic characteristics of piezoelectric shells were
derived by neglecting the shell thickness [9] or by assuming constant stress and displacement distribution along
the thickness direction [10]. With regard for the anisotropy of piezoelectric materials of ceramic rings or
cylinders, dynamic solutions for the radial displacement and electric potential were obtained in terms of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Lommel functions as well as Bessel functions [11,12]. By reducing the anisotropic elastic properties to isotropic
ones in terms of Young’s modulus and shear modulus and maintaining the anisotropic dielectric and
piezoelectric properties, the fundamental natural frequency of cylindrical transducers was conveniently
calculated according to the sizes of the cylinder [13].

The purpose of this paper is to establish a formula for calculating the fundamental natural frequency of
piezoelectric cylindrical transducers with consideration of the piezoelectric anisotropy but without relying on
the inconvenient Lommel function. First of all, the differential equations of piezoelectric radial motion were
derived in terms of radial displacement and electric potential. The characteristic equation of radial vibration
was obtained by applying mechanical and electric boundary conditions. Theoretical calculations of the
fundamental natural frequency are compared with numerical calculations and experimental observations for
transducers of several sizes. The calculated results are also compared with the earlier results [13] of theoretical
analysis simplifying the piezoelectric anisotropy into isotropy.

2. Theoretical analysis

The radial vibration characteristics of a piezoelectric cylindrical transducer are theoretically analyzed with
consideration for the anisotropy of piezoelectric materials.

2.1. Problem formulation

A piezoelectric cylindrical transducer is schematically shown in Fig. 1. The piezoelectric cylinder has
uniform electrodes on the inner surface of radius Ri and on the outer surface of radius Ro. Radial vibrations in
the cylinder can be described in terms of the axisymmetric radial displacement u(r, t) and electric potential f(r,
t), which are both functions of the radial coordinate r and time t.

The radial and circumferential components of normal stresses sr and sy and the radial component of electric
displacement Dr, incorporating piezoelectric effect, in the piezoelectric cylinder are expressed as follows [12].

sy ¼ cE
11

u

r
þ cE

13

qu

qr
þ e31

qf
qr

, (1)

sr ¼ cE
31

u

r
þ cE

33

qu

qr
þ e33
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qr

, (2)

Dr ¼ e31
u

r
þ e33

qu
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� �S

33

qf
qr

. (3)

Here, e31; e32; e33 and �S
33 are constants expressed as follows.

e3j ¼ cE
ij d3i ði; j ¼ 1; 2; 3Þ, (4a)
r

z

RoRi

Electrodes

Fig. 1. Schematic diagram of a cylindrical transducer.
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�S
33 ¼ �

T
33 � e3id3i, (4b)

where cE
ij are the stiffness constants, dkl are the piezoelectric strain constants, and �T

33 is the dielectric
permittivity. The stiffness constants can be related to compliance constants or technical constants [14].

The equation of motion derived from the force equilibrium is the following [15].

qsr

qr
þ

sr � sy
r
¼ r

q2u
qt2

(5)

and the electrostatic charge equation is the following [16].

1

r

q
qr
ðrDrÞ ¼

qDr

qr
þ

Dr

r
¼ 0, (6)

where r is the mass density. Inserting Eqs. (1)–(3) into Eqs. (5) and (6) yields the following equations.
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Eqs. (7) and (8) form a set of differential equations, that do not yield a solution. By eliminating the terms
including (e31/r) q/qr, Eqs. (7) and (8) turn out to be the following ones at the sacrifice of the accuracy in the
solution.
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where cL (¼ ½cD
33=r�

1=2
) in Eq. (9) is the propagation velocity of the longitudinal wave, and cD

33 ¼ cE
33 þ e33

2=�S33.
When the voltage applied to the electrodes is a harmonic function of time t with frequency o, the

displacement u and the electric potential f are regarded as harmonic functions of time with the same
frequency. Therefore, u(r, t) and f(r, t) can be expressed through the separation of variables in the following:

uðr; tÞ ¼ ~uðrÞeiot, (11a)

fðr; tÞ ¼ ~fðrÞeiot. (11b)

Substituting Eqs. (11a) and (11b) into Eqs. (9) and (10) provides the following governing equations:

r2
d2 ~u

dr2
þ r

d ~u

dr
þ ðk2r2 � p2Þ ~u ¼ 0, (12)

d

dr
r
d ~f
dr

 !
¼

e33

�S
33

d

dr
r
d ~u

dr

� �
, (13)

where k ( ¼ o/cL) is the wavenumber, and p is a constant defined as p2 ¼ cE
11=cD

33.
The solution of Eq. (12) has the following form:

~uðrÞ ¼ A1JpðkrÞ þ A2J�pðkrÞ. (14)

After inserting Eq. (14) into Eq. (13), the solution of ~fðrÞ is obtained as follows:

~fðrÞ ¼
e33

�S
33

A1JpðkrÞ þ A2J�pðkrÞ
� �

þ A3 ln rþ A4. (15)

The unknown constants A1, A2, A3, and A4 are determined according to the boundary conditions.
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2.2. Characteristic equation

As shown in Fig. 1, the piezoelectric cylinder has an inner radius of Ri and an outer radius Ro. The
transducer is driven by an electric voltage V0 eiot applied between its inner and outer surfaces. Boundary
conditions are established as follows:

~sr ¼ 0 and ~f ¼ 0 at r ¼ Ri, (16a,b)

~sr ¼ 0 and ~f ¼ V o at r ¼ Ro. (16c,d)

Since the radial stress sr (¼ ~sðrÞeiot) has the formula as stated in Eq. (2), applying boundary conditions
(16a–d) to Eqs. (14) and (15) yields the following equations.

f 1ðk;RiÞA1 þ f 2ðk;RiÞA2 þ
e33

Ri

A3 ¼ 0, (17a)

g1ðk;RiÞA1 þ g2ðk;RiÞA2 þ A3 ln Ri þ A4 ¼ 0, (17b)

f 1ðk;RoÞA1 þ f 2ðk;RoÞA2 þ
e33

Ro

A3 ¼ 0, (17c)

g1ðk;RoÞA1 þ g2ðk;RoÞA2 þ A3 ln Ro þ A4 ¼ V 0, (17d)

where

f 1ðk; rÞ ¼ cD
33
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½JpðkrÞ� þ cE
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JpðkrÞ

r
, (18a)
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½J�pðkrÞ� þ cE

31
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r
, (18b)

g1ðk; rÞ ¼
e33

�S
33

JpðkrÞ, (18c)

g2ðk; rÞ ¼
e33

�S
33

J�pðkrÞ. (18d)

Eliminating the constants A3 and A4 in Eqs. (17a–d) results in a set of two equations in a matrix form as
follows.

B11 B12

B21 B22

" #
A1

A2

" #
¼

0

V 0

" #
. (19)

B11 ¼ Rof 1ðk;RoÞ � Rif 1ðk;RiÞ

B12 ¼ Rof 2ðk;RoÞ � Rif 2ðk;RiÞ

B21 ¼ g1ðk;RoÞ � g1ðk;RiÞ �
Ro

e33
f 1ðk;RoÞ ln

Ro

Ri

B22 ¼ g2ðk;RoÞ � g2ðk;RiÞ �
Ro

e33
f 2ðk;RoÞ ln

Ro

Ri

The unknown constants are determined by obtaining constants A1 and A2 from Eq. (19) and inserting them
into Eqs. (17a) and (17b).

A1 ¼ �
V 0

D
Rof 2ðk;RoÞ � Rif 2ðk;RiÞ
� �

, (20a)

A2 ¼
V0

D
Rof 1ðk;RoÞ � Rif 1ðk;RiÞ
� �

, (20b)
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A3 ¼
V 0

D
1

e33
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, (20c)
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� ��

, ð20dÞ

where D represents the determinant of the matrix in Eq. (19).
Resonance occurs when the determinant D is equal to 0.

D �
B11 B12

B21 B22

�����
����� ¼ 0. (21)

Eq. (21) is the characteristic equation representing the resonance of a piezoelectric cylindrical transducer
driven in the radial direction. Meanwhile, the mode shapes of the radial vibration can be obtained by inserting
Eqs. (20a–b) into Eq. (14) and assuming a value of 1 for V0/D for a relative displacement distribution.
2.3. Fundamental natural frequency

The results of the analysis described in the previous section can be verified by calculating the natural
frequencies and comparing them with experimental observations. The unknown variable k in Eq. (21) can be
calculated easily by using a root-finder function (FindRoot) available in Mathematica [17]. A successful search
necessitates a good initial guess, which can be selected by the elastic natural frequency of a corresponding non-
piezoelectric, i.e. elastic, cylinder. Once the wavenumber k is evaluated, the natural frequency f is obtained
from the following relation:

f ¼
kcL

2p
. (22)

The piezoelectric material selected for the numerical calculation and experiment was PZT (EC-64),
manufactured by EDO Co. The material properties are as summarized in Table 1, and they are similar to the
values reported in other literature [18]. The properties converted in terms of the expressions in this paper are as
in Table 2. Three transducers A, B, and C of different sizes were used in the research. Their outer radius Ro

and inner radius Ri are seen in Table 3. The lengths of the transducers A, B, and C shown in Fig. 2 were 20, 15,
and 12mm, respectively, but these values were unnecessary in the calculations.

The piezoelectric natural frequencies of the fundamental mode for these transducers were calculated from
Eq. (21) and listed in Table 3. The frequencies of the isotropic analysis [13] were also listed in Table 3 and
compared with anisotropic analysis results. It appears that the discrepancy between two analysis results is
larger for the cylindrical transducers with a smaller radius.
Table 1

Material properties of a PZT (EDO EC-64)

Properties Values

Mechanical Mass density, r 7500 kg/m3

Elastic compliance, sE
11, sE

22
12.8� 10�12m2/N

sE
12; s

E
13

�4.2� 10�12m2/N

sE
33

15.0� 10�12m2/N

Dielectric Relative permittivity, �T33=�0 1300

Electromechanical Piezoelectric constant, d31, d32 �127� 10�12C/N

d33 295� 10�12 C/N
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Table 2

Converted properties of a PZT (EDO EC-64)

Properties Values

Mechanical Elastic stiffness, cE
11; c

E
22

10.9� 109N/m2

cE
12

5.1� 109N/m2

cE
13

4.5� 109N/m2

cE
33

9.2� 109N/m2

Dielectric Permittivity, �T33 11.8� 10�9 C2/Nm2

Electromechanical Piezoelectric constant, e33 15.7C/m2

e31, e32 �7.1C/m2

Table 3

Comparison of the natural frequencies of the fundamental mode calculated by anisotropic and isotropic analyses and by FEM and

measured by an experiment for transducers of three sizes

Transducer Size (mm) Fundamental frequency (kHz)

Outer radius Ro Inner radius Ri Theoretical analysis FEM Measurement

Anisotropic Isotropic

A 14.3 12.0 41.5 37.9 37.6 38.8

B 10.05 7.80 61.4 56.0 55.3 56.3

C 7.10 5.50 87.0 79.4 77.9 80.8

Fig. 2. Photograph of three transducers, whose sizes are listed in Table 3.
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3. Comparison with numerical and experimental results

The theoretical results obtained in the previous section are compared with numerical and experimental
results.

3.1. Numerical analysis by the finite-element method

In the previous section, the radial vibration characteristics of piezoelectric cylindrical transducers were
theoretically analyzed. The analysis considered the anisotropy of piezoelectric materials and calculated the
piezoelectric natural frequency of the fundamental mode. During the derivations the terms including (e31/r)q/qr

in Eqs. (7) and (8) were eliminated to obtain solvable Eqs. (9) and (10). In order to confirm the validity of the
analysis results, this section provides numerical results obtained by the finite element method.
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A commercial finite-element software ANSYS was used to calculate the vibration modes and their natural
frequencies of piezoelectric cylindrical transducers. Transducers A, B, and C were modeled by using SOLID5
element, which is a coupled-field element including piezoelectricity. The models were divided by 10 in the
radial direction, by 40 in the circumferential direction, and 7, 6, and 5, in the axial direction for transducers A,
B, and C, respectively.

With the electric boundary conditions on the inner and outer surfaces of the cylinder, modal analysis
provided piezoelectric natural frequencies and mode shapes. As an example the fundamental mode of
transducer A is shown in Fig. 3. Solid lines in the figure represent the deformed shape and show the cylinder
expanded radially. The numerically calculated piezoelectric natural frequencies of the fundamental mode were
listed in Table 3 and compared with the theoretically calculated results.
3.2. Experiments

Experimentally obtained piezoelectric natural frequencies for the piezoelectric cylindrical transducers shown
in Fig. 2 were reported earlier [13], and they are cited in this section to compare with the calculated values. The
resonance frequency of a transducer was measured using the Impedance Gain/Phase Analyzer (HP 4194A).
The measured impedance curves displayed as a function of the frequency were shown in Fig. 4. The locations
of local minimum impedance in the curves of Fig. 4 represent the piezoelectric natural frequencies. The
measured piezoelectric natural frequencies were listed in Table 3 and compared with calculated values.
3.3. Discussion

It appears that the difference between the theoretical and numerical results is about 10% even though the
values calculated theoretically by isotropic analysis and those calculated by FEM show better agreement. The
error in the theoretical result seems to be caused by the approximation in the derivation of anisotropic
analysis.

As seen in Table 3, the theoretical values calculated through the anisotropic analysis agree with
the measured values within 10% error. Another reason of the frequency error seems to be the assumption of
Fig. 3. Fundamental mode of the radial vibration obtained for transducer A by FEM.
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Fig. 4. Impedance curves of the piezoelectric transducers, as measured as a function of frequency; (a) transducer A, (b) transducer B, and

(c) transducer C.
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one-dimensional theory. The theory did not consider the mode along the thickness, while the piezoelectric
cylinder used for the experiment is not a thin ring.

Within the range of the error, the analysis described in Section 2 appeared to explain the vibration
characteristics of piezoelectric cylindrical transducers. Particularly it can be useful in the design stage in
determining the size of a transducer for a particular frequency.

4. Conclusion

The vibration characteristics of piezoelectric cylindrical transducers were studied by deriving a characteristic
equation for resonance of radial vibrations. The piezoelectric natural frequencies of the transducers were
calculated from the theoretical formulae and then compared with numerical and experimental values. This
comparison verifies that the theoretical results of the analysis taking into account the piezoelectric anisotropy
agree well with the experimental results within 10% error. The error was caused by the elimination of a term
during a derivation to obtain solvable equations. Comparison shows that isotropic analysis is also a
reasonable approach to estimate the fundamental natural frequency of piezoelectric transducers.
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